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Abstract
A multibody formalism is presented that can be applied to automatically generate efficient

equations of motion for a system of rigid bodies in a tree topology.  The formalism is built on
Kane’s analysis method, and is described using vector/dyadic notation.  In addition to defining a
way to formulate equations of motion, it specifies many details of the analysis that have formerly
involved judgements made by a dynamicist.  These details include “rule of thumb” issues such as:
(1) making modeling simplifications, (2) choosing state variables, (3) introducing intermediate
variables, (4) choosing coordinate systems to represent vectors, and (5) choosing recursive versus
nonrecursive formulations.  The formalism has been automated using a computer algebra language
that supports vector/dyadic algebra, “small variable” simplification options, and the automated
introduction of new symbols.  A companion paper describes this language and provides details of
an example spacecraft multibody system.  Results shown in this paper for the example spacecraft
illustrate the high computational efficiency of the simulation code.  

Introduction
There is a large body of literature covering systematic analsis methods for mechanical systems

composed of rigid bodies, which are called “multibody formalisms.”  The formalisms, all based on
first principles, nonetheless represent a variety of analytical approaches.  Large sets of simple
dynamical and algebraic constraints equations can be formed into large matrices that are handled
using sparse-matrix methods1 or coordinate partitioning.2  Minimal sets of dynamical equations
involving Lagrangian generalized coordinates can be derived for tree-topology systems3 and
combined with algebraic constraint equations to handle kinematical loops.4-6  Kane’s method7-10

and others are based on the principle that the virtual power of constraint forces and moments are
identically zero.4-6  Although most formalisms produce the equations of motion in implicit form, as
a set of coupled differential equations, recursive, “order(n)” formalisms produce equations of
motion in explicit form.11  

In all of these formalisms, the equations of motion are essentially defined for once and for all in
generic form before the analysis starts, and the analysis consists of plugging in coordinates and
inertia parameters in the appropriate spots in the equations.  When programmed, they require as
“input” only a description of the layout of the multibody system.  That description, followed by the
specified manipulations, results in equations of motion that can be solved by computer.  These
formalisms include all coordinate system transformations, and require only simple scalar arithmetic
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operations for their implementation.  All could conceivably be implemented either numerically or
symbolically.  This approach contrasts with the strategies and tactics usually employed by a human
dynamicist deriving equations by hand.  For example, a dynamicist uses knowledge of the specific
system to guide the analysis, performing extensive simplifications from the very start when
possible.

The purpose of this paper is to describe a formalism that follows the approach taken by a
human analyst.  Rather than developing a set of generic equations for all systems, a rule-based
procedure is developed for formulating equations using the approach advocated by Kane.7,8

Kane’s method has been programmed in prior work,9,10 but not with the generality needed to
include arbitrary forces and moments acting on the system.  To obtain the desired generality,
equations are presented in basis-free vector notation.  This contrasts with past work, in which
vector bases are determined once and for all by the author of the formalism.  In fact, much of the
complexity of the formalisms based on tree topologies has involved carefully specified matrix
operations that provide required coordinate transformations.3-6,11  The basis-free vector/dyadic
representation used in this paper would be difficult to implement numerically, but can be applied
symbolically by a dynamicist using pencil and paper.  More practically, the method is applied
automatically by a computer program using symbolic computation methods that are described in a
companion paper.12

This paper is limited in scope to holonomic tree-topology systems composed of rigid bodies.
Systems with nonholonomic constraints or closed kinematical loops aree handled by extending the
methods presented here.  (The software used to demonstrate the methods does in fact have the
ability to handle the more general topologies.13)

Notational Conventions
The state variables for a multibody system include n generalized coordinates (designated q1,

q2, ... qn) and ν independent speeds (designated u1, u2, ... uν).  The system is said to have ν
degrees of freedom.  The dimensions n and ν differ when (1) coordinates that are not of interest are
omitted, or (2) the system is subject to nonholonomic constraints.  However, within the context of
this paper, n = ν.  The equations of motion are ordinary differential equations that are commonly
classified into two groups: kinematical and dynamical.  The kinematical equations are used to
compute derivatives of the generalized coordinates.  In matrix form, they are:

    S     q =     v    (1)

Where     S     is an n × n  matrix, q is a column array of length n containing the derivatives of the
generalized coordinates, and     v     is a column array of length n.

The dynamical equations are used to compute derivatives of the independent speeds
(accelerations).  In matrix form, they are:

     M      u =    f   (2)

where      M      is a ν × ν matrix called the mass matrix, u is a column array containing the ν derivatives

of independent speeds, and    f    is a column array of length ν, called the force array.  
The first objective of the symbolic analysis is to obtain the elements of the arrays     S    ,     v    ,      M     , and

   f   .  The equations can be coded in a computer language to define a procedure that calculates values
for the derivatives of the coordinates and speeds, given values of the coordinates, the speeds, and
time.  The procedure that computes derivatives is part of a computer program called a simulation
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code that numerically integrates the differential equations to “simulate” the multibody system.  The
algorithm that computes of the derivatives is the actual “end product” of the analysis.  Because the
calculations of the derivatives are repeated many times in most simulation codes, the efficiency of
the algorithm is of great interest when computation time must be minimized.

Bodies in the multibody system are designated by plain capital letters, e.g., body A, body B.
The inertial reference is called N.  Points are designated by capital letters that often have subscripts.
Origins of coordinate systems are always written with a subscript zero (e.g., B0).  When
discussing bodies in the system, the current (generic) body under consideration is called B.  Its
movements are defined with reference to another body in the system, called the parent of B, and
designated A.  (The parent, A, can be either another body or N.)  The configuration of the
multibody system when all generalized coordinates are zero is called the nominal configuration.

Vectors are written with bold type.  Unit-vectors that are parallel with axes in coordinate
systems are written with a lower-case letter that is the same as the body in which the unit-vector is
fixed, and subscripted with an index of 1, 2, or 3.  For example, the three directions of the
coordinate system of B are the unit-vectors b1, b2, and b3.  Other unit-vectors, used to define
directions of interest, are written with the letter d.  Position vectors are written with the letter r,
superscripted with the names of the end-points of the vector.  For example, a vector connecting the
origin of B (B0) to its mass center (B*) is rB0B*.    The absolute velocity of a point is written with
the letter v  superscripted with the symbol for the point.  For example, the absolute velocity of point
B* is vB*.  An incremental velocity is defined as the difference between the absolute velocities of
two points, and is written with the two points in the superscript, e.g.,

vA*B* ≡ vB* – vA* (3)

Acceleration and incremental acceleration vectors are written in the same fashion as for velocity,
but using the letter a (e.g., aB*, aA*B*). Angular velocity is written with the symbol w , e.g., wB.
Incremental angular velocity is the same as relative angular velocity.  The angular velocity of B
relative to A is written AwB.    Angular acceleration is written using the letter a, e.g., aB.
Incremental angular acceleration is written as

aAB ≡ aB – aA (4)

Incremental velocity, incremental acceleration, and incremental angular acceleration are not the
same as relative velocity, relative acceleration, and relative angular acceleration.  (However,
incremental angular velocity is the same as relative angular velocity.)

A given vector can be written many ways, using alternative unit-vectors.  A vector written
using only the three unit-vectors aligned along the axes of the coordinate system of body B is said
to be expressed in the basis of B.  A vector written with no explicit trigonometric functions is said
to be expressed in native form. For example, consider a system of two bodies A and B, where a1

= n1 and b2 = a2, and the angular velocity of B, wB, expressed in native form, is

wB = u1 n1 + u2 a2 (5)

Next, consider a dyadic obtained by “doubling” three mutually orthogonal unit-vectors and adding
the results.  This type of dyadic is called a basis dyadic.  For example, three such dyadics are

N  = n1 n1 + n2 n2 + n3 n3

A = n1 n1 + a2 a2 + a3 a3
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B  = b1 b1 + a2 a2 + b3 b3 (6)

Dotting a vector with a basis dyadic “projects” the vector into the basis associated with the dyadic.
However, the new vector has the same magnitude and direction as the original vector:  

wB = wB • N  = wB • A = wB • B (7)

The written representation of the vector may be changed by the projection operation.  For example,
the three dot products shown in Eq. (7) are written as follows:

wB = wB • N  = u1 n1 + u2C1n2 + u2S1n3
 

= wB • A = u1 n1 + u2a2
 

= wB • B  = u1C2b1 + u2 a2 + u1S2b3 (8)

where C1, S1, C2, and S2 are cosine and sine functions associated with joint rotation angles.
When the equations of motion are programmed for numerical solution, efficiency is improved

by ensuring that each arithmetic operation between two variables is performed only once.  The first
occurrence of an expression that appears more than once is replaced with an intermediate variable,
and the intermediate variable is used subsequently.  The replacement of an expression with an
intermediate variable is indicated in this paper by enclosing the expression with the symbols “«”
and  “».”  For example, the expression «wB • B» is interpreted as: “take the dot product as
indicated, then replace scalar expressions with intermediate variables.”  For the above example, the
result would be an expression similar to the following:

«wB • B» → Z8 b1 + u2 a2 + Z9 b3 (9)

where Z8 and Z9 are intermediate variables introduced for the expressions u1C2 and u1S2,

respectively.  All expressions developed later involving «wB • B» would include Z8 and Z9, rather
than u1C2 and u1S2.  (Details of how an expression is processed to define intermediate variables
are provided in the companion paper.12)

The choice of a vector basis and the use of intermediate variables are of no consequence with
respect to the correctness of the equations of motion.  However, these choices can strongly
influence the efficiency of the resulting simulation code.  Accordingly, they are considered in the
formalism that will be presented.

Dynamics Analysis via Kane’s Method
Starting with knowledge of the multibody system of interest, and desiring equations of the

form of Eqs. (1) and (2) as the “final product,” an analysis based on Kane’s method might proceed
as follows.  First, the analyst decides how many bodies are used to represent the system, and how
they are related to each other kinematically by joints.  For each body, three mutually orthogonal
unit-vectors are established to define directions and positions relative to that body.  All of the force
and torque-producing components are identified, including moments caused by forces whose lines
of action do not pass through the mass centers of the bodies upon which they act.  Generalized
coordinates  and generalized speeds are introduced as state variables, such that it is possible to
write an expression for the instantaneous position and velocity of any point on any body in the
system using dimensional parameters and the state variables.
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As the state variables are introduced, the analyst formulates kinematical equations that define
the derivatives of the generalized coordinates in terms of the generalized speeds [see Eq. (1)].
Often, the speeds are simply the derivatives of the coordinates (i.e., qi = ui).  However, the analyst
is permitted to introduce speeds that are not simply derivatives of the generalized coordinates,
sometimes called derivatives of quasi-coordinates.

The analyst develops an expression for the angular velocity vector of each body B, wB.  From
each angular velocity, ν terms called partial angular velocities are defined:

wi
B = 

∂wB

∂ui      (i = 1, ... ν) (10)

A partial angular velocity is  simply a coefficient appearing in an expression for angular velocity.
Because angular velocity is a vector, and speed is scalar, it follows that a partial angular velocity is
always a vector.  The total number of partial angular velocities that exists for the multibody system
is the product ν NB, where NB is the number of rigid bodies in the system.

Next, expressions are developed for the velocity vectors of the the mass centers of each body,
vB*.  From these expressions, ν terms called partial velocities are defined:

v i
B* = 

∂vB*

∂ui        
(i = 1, ... ν) (11)

The ν  dynamical equations for the system can be written as follows, for i = 1, ... ν:

0 = 

Tt
B∑

t=1

NB,T

 –  a B • I
B*

 – wB × I
B*

 • wB  • wi
B 

+ Ff
B∑

f=1

NB,F

  – mB aB*  • v i
B*

∑
B

NB

(12)

In the above equation set, the outer summation, with index B, is meant to imply summing over all
bodies in the system. The number of torques acting on body B is designated NB,T, and the

individual torques are designated Tt
B.  Similarly, the number of forces acting on body B is

designated NB,F, and the individual forces are designated Ff
B.  Note that forces acting on B can

appear twice: once as a force Ff
B, and once as a coefficient in a moment about the mass center of

B*,

T = rB*P × F (13)

where P is a point in B on the line of action of the force vector, F.  The mass of B is designated

mB, and the inertia dyadic of B (with respect to its mass center) is designated I
B*

.  
The analyst can convert the dynamical equations from the form of Eq. (12) into the desired

form of Eq. (2) by inspection, moving terms containing the speed derivatives to the left-hand side.

The Multibody Formalism
The remainder of this paper describes a formal process (i.e., a multibody formalism) by which

an algorithm for computing values of the derivatives of the state variables is developed from a
geometric description of a multibody system.  The process is performed in three consecutive steps:
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1. system description
2. kinematics analysis
3. dynamics analysis
In developing the formalism, we assume a computer language exists that is capable of

manipulating numbers, scalar algebraic expressions, vectors, dyadics, and points.  We also
assume that a function exists to introduce a new intermediate variable for scalar expressions
contained within vectors, as illustrated in Eq. (9).  The formalism  presumes that bodies are
represented in such a form that data associated with each body are easily accessible.  It also
presumes that vector dot-products and cross-products are formed automatically, based on the
properties of the body connections.  By assuming the existence of this specialized symbolic
computer language, we can ignore many of the algebraic details that are handled symbolically, and
can concentrate on dynamics and kinematics.  (The specialized symbolic computer language exists
and is described in the companion paper.)

An example multibody system will be used to illustrate the methods that follow.  The system,
shown in Figure 1, is a satellite with a main body B (called the bus), a flexible boom, F, and a
camera, D, mounted on a clock, C.  Dimensions and locations of significant points are shown in
Figure 2.  Further information about this system is provided in the companion paper.  

3

2

1

Bus

Camera

Boom

Clock

Figure 1.  Example multibody system.

Step 1: System Description
In the first step of the analysis, all of the bodies, joints, and force- and torque-producing

elements are described by the dynamicist.  (The companion paper lists the description for the
example system in a computer program that uses this formalism.)  From that description, a set of
expressions is developed to represent each element.  Each rigid body in the system has associated
with it a reference frame and a coordinate system.  The analyses performed when a body is added
deal mainly with the coordinate system of the new body, as determined by the kinematics of the
joint connecting it to a parent body that has already been described.  (The inertial reference, N, can
also be specified as a parent.)  Note that the convention of defining each new body as a “child” of
an existing body naturally organizes the system into a tree topology.   
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Figure 2.  Dimensions of satellite.

Joint Description
A building-block joint model is used to define the kinematical relation between a new body and

its parent.  The joint includes between zero and six kinematical degrees of freedom.  Three of these
are consecutive translations, and the other three are consecutive simple rotations.  The parameters
that describe the building-block joint are summarized in Table 1, with optional items enclosed in
curly brackets. The geometry of a joint is illustrated in Figure 3 for an example involving one
degree of freedom for rotation and one for translation.  

Table 1.  Parameters and degrees of freedom of a body/joint.
Parameter Description

rA0BJ position of joint point of B relative to origin of parent.

({dBt1, {dBt2, {dBt3}}}) list of 0, 1, 2, or 3 directions for translational degrees of
freedom of B, fixed in the coordinate system of the parent.

({i1, {i2, i3}}) list of 0, 1, or 3 axis indices in B for sequential rotations.  
dBrot orientation of first rotation axis of B (fixed in the coordinate

system of the parent).
dBref reference direction for first rotation of B (fixed in the

coordinate system of the parent).
({dBr1,

{dBr2, dBr3}})

list of 0, 1, or 3 directions of rotations for B.  This list is
derived from the above parameters.  

The relationship between the coordinate systems of B and A depends on the type and number
of degrees of freedom:

• If the joint has no translational degrees of freedom, B0 is coincident with a point in A called
the “joint point” and designated BJ.  Otherwise, it can move relative to BJ, in directions that
are fixed in A.

• If the joint has no rotational degrees of freedom, the axes in B may be parallel to those in
A.  Otherwise, the directions of at least two of the axes in B differ from those of A.  (The
dynamicist is permitted to change the orientation of B relative to A without including a
rotational degree of freedom, to define a new coordinate system of interest.)  
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Parent body A

Body B

A* (c.m.) B* (c.m.)

b
3

b1

a3
2a

Position of
 for zero rotation
(ref. axis,       )

b1

A  , origin for body A
(joint connecting to its 
parent)

q i+1
rA  B

iq TdB

rot. axis
(       =      )

b2

B  , origin for body B0

0

r

rA*B0

A  A*0

B  B*0r

b 3rotdB

refdB

0 J

B  , Joint Point 
fixed in A

J

a1

Figure 3. Geometry of body relative to its parent.

One generalized coordinate is introduced for each degree of freedom of the joint.  In Figure 3,
the magnitude of the translation is the generalized coordinate qi, and the magnitude of the rotation
is the generalized coordinate qi+1.

Table 2 shows how the joints of the satellite example are characterized.  The first body, B, has
six joint degrees of freedom: three in translation, and three in rotation.  The other bodies each have
just one joint degree of freedom in rotation.

The number of translational degrees of freedom, Ntd
B , is determined by the length of the list of

their directions.  The position of point B0 relative to point A0 is the vector

rA0B0 = rA0BJ + qi+o∑
i=1

Ntd
B

 dti
B (14)

where o is an offset constant that maps the index i from Eq. (14) into the indices used for the
generalized coordinates.  For the satellite, Ntd

B  is 3 for body B and zero for the other bodies.  The
offset, o, is zero.  In Figure 3, Ntd

B  is 1 and the position vector rA0B0 is rA0BJ + qi dBT.  
The number of rotational degrees of freedom is determined by the length of the list of axis

indices.  Two pieces of information are required in addition to the list, to specify the orientation of
B relative to A when all generalized coordinates are zero.  First, the orientation of the first rotation
axis, dBrot, is in a direction fixed in the parent.  (The direction dBrot may or may not be parallel
with an axis of the coordinate system of the parent.)  Second, a reference direction dBref defines the
orientation of a reference axis in B.  In the nominal configuration, the directions of three axes of
the coordinate system of B are defined for three possible cases, based on the first rotation index i1.
Table 3 summarizes these three cases.
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Table 2.  Body and joint properties of satellite example.
Property Body B Body C Body D Body E Body F
Name Bus Clock Camera E Boom
parent N B C B E
level 1 2 3 2 3
children C, E D F
translation category Nonrecursive Fixed Recursive Fixed Recursive
composite body mass:
MBc

MB + MC MC MD 0 MF

unit-vectors b1, b2, b3 c1, c2, b3 c1, d2, d3 e1, e2,
b3

e1, f2, f3

rotation category Nonrecursive Rotor Recursive Rotor Recursive
inertia dyadic of

composite body: I
Bc*

(IB11 + MB P12 + MC
(L2 -P1)2) (b1 b1) +
IB12 (b2 b1) + IB12

(b1 b2) + IB13 (b1 b3)

+ (IB22 + MB P12 +

MC (L2 -P1)2) (b2 b2)
+ IB13 (b3 b1) + IB23
(b3 b2) + IB23 (b2 b3)

+ IB33 (b3 b3)

IC (b1 b1) +
IC (b2 b2)

ID11 (c1 c1)
+ ID12 (d2
c1) + ID12
(c1 d2) +

ID13 (c1 d3)
+ ID13 (d3
c1) + ID22
(d2 d2) +

ID23 (d3 d2)
+ ID23 (d2
d3) + ID33

(d3 d3)

0 IF1 (e1
e1) + IF2
(f2 f2) +
IF1 (f3

f3)

translational coordinates q1, q2, q3
translational speeds u1, u2, u3
translational directions n1, n2, n3
directions of trans. speeds b1, b2, b3
rotational coordinates q4, q5, q6 q7 q8 q9 q10
rotational speeds u4, u5, u6 u7 u8 u9 u10
rotational directions n1, (C6 b2 + S6 b1), b3 b3 c1 b3 e1
directions of rot. speeds b1, b2, b3 b3 c1 b3 e1
joint point (in parent) 0, 0, 0 0, 0, 0 0, L3, -L1 0, -L7, 0 0, 0, 0
mass center of comp.
body

0, 0, -P1 0, 0, -L2 0, -L5, -L6 0, 0, 0 0, -L8, 0

NOTE: P1 = L2 MC/(MB + MC)



Table 3.  Orientation of unit-vectors in the nominal configuration.
i1  = 1 i1  = 2 i1  = 3

b1 = dBrot b2 = dBrot b3 = dBrot

b3 = dBrot × dBref b1 = dBrot × dBref b2 = dBrot × dBref

b2 = b3 × b1 b3 = b1 × b2 b1 = b2 × b3

When the joint has three rotational degrees of freedom, the list of axis indices specifies the
sequence of rotations.  For the satellite example, a 1-2-3 rotation was used for the bus, B.  Table 2
shows that the three rotation angles are q4, q5, and q6.  The first rotation axis is n1, the third is b3,
and the second, fixed in an intermediate frame, is (C6 b2 + S6 b1), where C6 and S6 are the cosine
and sine of q6.  In general, there are six possible directions of the second rotation axis,
corresponding to the possible combinations of the second  and third rotation axes (i2 and i3).  Table
4 lists these directions.  

Table 4. Direction of second rotation for joint with 3 rotations.
i3 i2 dBr2

1 2 C3 b2 – S3 b3

3 S3 b2 + C3 b3

2 1 C3 b1 + S3 b3

3 –S3 b1 + C3 b3

3 1 C3 b1 – S3 b2

2 S3 b1 + C3 b2

NOTE: S3 and C3 are the sine and cosine of the third rotation angle of the joint

In order to simplify some of the rules that follow, the building-block joint model  allows zero,
one, or three consecutive rotations between a body and its parent, but not two rotations.  Joints
which involve two consecutive rotations are represented by two building-block joints, where the
first is associated with a massless body.  In the satellite model, the flexing of the boom in two
directions is handled by introducing a massless body E with a rotational degree of freedom.
Together, bodies E and F describe a rigid body (with mass and inertia) connected to B by a joint
that has two rotational degrees of freedom.

Inertia Properties of Bodies and Composite Bodies
As each body is entered, an analysis is performed to set the inertia properties of the new body

and all bodies “up” the tree.  This is done to make modelling simplifications when inertia properties
from several bodies can be lumped together.  For example, consider the clock (body C) in the
satellite.  Its mass center is located on the joint axis, and thus its mass can be lumped with the mass
of the bus (body B).  Also, the clock has products of inertia that are zero, and the same moment of
inertia applies for any direction perpendicular to the spin axis (IC).  Thus, terms associated with the
inertia dyadic of the clock can be expressed as constants when using using directions fixed in the
parent (see Table 2).

When each new body added, the following procedure is applied to set inertia properties:
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1. The body is placed into one of three categories based on the degrees of freedom of its joint
and the location of its mass center.  The categories are defined in Table 5.  A list, called the
“fixed children of B” is made of all children of B that are in the category “fixed.” (The first
time this procedure is applied to body B, there are no children and a null list is used.)

2. A composite mass for B is defined as the sum of the mass of B with the composite masses
of the fixed children of B:

mBc = mB + mbc∑
b

fixed
children

(15)

where mBc is the composite mass for B, and the sum covers the fixed children, with the
index b indicating each body that is a member of the list of fixed children of B.  For
example, Table 2 shows a composite mass for the bus of (MB + MC).  The mass of a fixed
body appears twice: once for the original body, and once for the parent.  Later, when
equations of motion are formed, only the term from the parent is used.

3. The coordinates of the composite mass are computed:

xi
Bc* = 

xi
B* mB + xi

bc* mbc∑
b

fixed
children

 mBc
    (i = 1,2,3) (16)

where xi
B* is one of the three coordinates of the mass center of B and xi

bc* is the
corresponding coordinate of the composite mass of a fixed child of B, which has been
converted to the coordinate system of B.  For example Table 2 shows that the mass center
for body B of the satellite has been modified to include the effect of fixed body C.  (All
other mass centers for the satellite are as shown in Figure 2.)

4. An inertia matrix for the composite body is constructed using the parallel axes theorem,
considering the masses of the fixed children:

Iii
Bc* = Iii

B* + mb xj
b*  – xj

Bc* 2 + xk
b*  – xk

Bc* 2∑
b

B, fixed
children

     
(i,j,k = 1,2,3; i≠j≠k)

Iij
Bc* = Iji

Bc* = Iij
B* – mb xi

b*  – xi
Bc*  xj

b*  – xj
Bc*∑

b

B, fixed
children

    
(i,j = 1,2,3; i≠j) (17)

Table 5.  Translation categories for a body.
Category Description Criteria

nonrecursive v i
B* can be described using only
translational speed variables

associated with B

joint has 3 d.o.f. in translation or (2
d.o.f. and wB × dt1

B  × dt2
B  = 0 and

vBJ • dt1
B  × dt2

B  = 0)
fixed mass center is fixed in reference

frame of parent
vB*A  = 0

recursive expression for v i
B* involves

velocity of A
neither of the above two criteria are

satisfied
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For example, in Table 2, the coefficients of the inertia dyadic of body B of the satellite
include the effect of the fixed mass of body C.  Inertia moments and products for the other
bodies in the satellite are the unmodified inertia parameters of the rigid bodies.

5. The inertia matrix constructed in step 4 is made into a dyadic using the unit-vectors of B:

I
Bc*

 = ∑
j=1

3
Iij
Bc* bibj∑

i=1

3
(18)

6. The rotational category of B is determined according to criteria shown in Table 6.  The
inertia matrix from step 4 is used to determine if B is a rotor.  If it is, the inertia dyadic is
converted to the basis of the parent using the identity

I
Bc*

= A • I
Bc*

• A (19)

Otherwise, the formulation obtained from Eq. (18) is kept.  For example, Table 2 shows
that the inertia dyadic for body C of the satellite is expressed as in Eq. (19).  All other
inertia dyadics are expressed as in Eq. (18), except for the zero inertia of the massless
intermediate body E.

7. The translational category of B is determined according to the criteria in Table 5.  
8. The above procedure is repeated for the parent of B, unless the parent is the inertial

reference (N).

Table 6.  Rotation categories for a body.
Category Description Criteria

nonrecursive angular velocity of body can be
described using only joint speeds
associated with B

joint has 3 d.o.f. in rotation

rotor inertia matrix can be expressed in
coordinate system of parent body

0 rotational d.o.f. or 1 rotational d.o.f.
and inertia matrix is diagonal with equal
moments orthogonal to spin axis

recursive expression for rotation of body
involves rotation of its parent

1 rotational d.o.f. and body is not a rotor

The last step in the above procedure means that as each body is added to the tree, the mass and
inertia properties of all bodies “up” the tree are subject to adjustment.  For example, in the satellite,
body B was first assigned inertial properties determined solely by the rigid-body characteristics of
B alone.  However, when body C was added and classified as “fixed,” the inertial properties of B
were modified to include a point-mass MC located as shown in Figure 2.

Speed Variables
One generalized speed is introduced for each joint degree of freedom.  If the joint has

translational degrees of freedom, and is recursive or fixed in translation (see Table 5), the
corresponding speeds are defined simply as the derivatives of the generalized coordinates.  If the
body is nonrecursive in translation, the corresponding speeds are defined as components of the
velocity of the mass center of the composite body B, in directions parallel to the body fixed axes.

If the joint has rotational degrees of freedom, and is recursive or a rotor, the corresponding
speeds are the derivatives of the generalized coordinates.  If the body is nonrecursive in rotation,
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the corresponding speeds are defined as components of the angular velocity of B, in directions
parallel to the body fixed axes.

For the satellite example, Table 2 shows that the speeds introduced for bodies C, D, E, and F
are in the same directions as the corresponding coordinates.  However, the speeds introduced for
body B are defined for directions fixed in B (b1, b2, b3), whereas the translational coordinates are
defined in directions fixed in N, and the rotation axes are in three reference frames corresponding
to sequential rotations of B.  

Step 2: Kinematical Analysis
An analysis is performed to obtain the kinematical equations that define derivatives of the

generalized coordinates in terms of known speeds, with the form of Eq. (1),     S     q =     v    .

Translational Coordinates
If the body is recursive in translation (see Table 5), the kinematical equation is simply

qi = ui    (recursive in translation) (20)

Otherwise, kinematical equations are obtained by considering the velocity of the body origin,
B0, relative to the reference frame of A.  This velocity can be written in terms of the derivatives of
the generalized translational coordinates introduced for B:

vB0A  = qo+j∑
j=1

Ntd
B

 dtj
B  (21)

An alternative expression can be written that involves the generalized speeds:

vB0A  = uo+j∑
j=1

Ntd
B

 vo+j
B*  – wB × rB0B* – vA0  (nonrecursive in translation) (22)

In the above equation, the direction associated with speed uo+j is the corresponding partial

velocity, vo+j
B* , which is not always parallel with the direction associated with the translation, dtj

B.
A kinematical equation is obtained for qi by equating the right-hand sides of Eqs. (21) and

(22), and dot-multiplying both by dBt,i-o:

qo+j∑
j=1

Ntd
B

 dtj
B  • dt,i-o

B  = uo+j∑
j=1

Ntd
B

 vo+j
B*  – wB × rB0B* – vA0  • dt,i-o

B (23)

Note that equations of the form of Eq. (23) reduce to the form of Eq. (20) when the body is
recursive in translation and the translational directions are orthogonal.  In terms of the matrix
equations (1), the elements of     S     for row i are obtained from the left-hand sides of Eq. (20) or Eq.
(23), and the elements of     v     are obtained from the right-hand side.

For the satellite example, the following kinematical equations are obtained for the translational
coordinate derivatives:

P1 = L2 MC/(MB + MC) Z1 = P1 u5 + u1 Z2 = P1 u4 -u2

q'1 = C5 (Z1 C6 + Z2 S6) + u3 S5
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q'2 = -(Z2 (C6 C4 -S6 S4 S5) -Z1 (C6 S5 S4 + C4 S6) + u3 C5 S4)

q'3 = u3 C5 C4 + Z1 (-C6 C4 S5 + S6 S4) -Z2 (C4 S5 S6 + C6 S4) (24)

The symbol P1 designates a constant that can be precomputed (it is a coordinate of a composite
mass center and also appears in Table 2),  the symbols Z1 and Z2 are intermediate variables, Ci is
the cosine of qi, S i is the sine of qi, and derivatives are indicated with a prime.

Rotational Coordinates
If the joint has one rotational degree of freedom, the kinematical equation is simply

qi = ui    (1 rotational d.o.f.) (25)

If the joint has three rotational degrees of freedom, we consider the three consecutive rotation
angles of B relative to its parent A: qo+1, qo+2, and qo+3 (o is an index offset; for the satellite
example, o=3, and the first rotation is q4).  The angular velocity of the body, relative to its parent,
can be written as follows:

wBA  = qo+j∑
j=1

3

 drj
B  (26)

where dBrj is the axis of rotation associated with qo+j.  The angular velocity of B relative to A can
also be expressed in terms of speed variables as follows:

wBA  = uo+j  bj∑
j=1

3
 – wA

     (27)

A set of 3 kinematical equations is obtained by equating Eqs. (26) and (27), and dot-multiplying

both sides by drj
B
 to yield the following for i=o+1, o+2, and o+3:

qo+j∑
j=1

3

 drj
B  • dr,i-o

B    = uo+j  bj∑
j=1

3
 – wA  • dr,i-o

B

         
 (3 rotational d.o.f.) (28)

Note that if Eq. (28) is applied for the case of 1 rotational d.o.f., it reduces to the form of Eq. (25).  
For the satellite example, the following rotational kinematical equations are obtained:

q'4 = (u4 C6 -u5 S6)/C5 q'5 = u5 C6 + u4 S6

q'6 = u6 -q'4 S5 q'7 = u7

q'8 = u8 q'9 = u9 q'10 = u10 (29)

Step 3: Dynamics Analysis
The unstructured form of the dynamical equations shown earlier in Eq. (12) requires further

manipulation to obtain the matrix form commonly used for computer solution.  Rather than
deriving equations  in the form of Eq. (12) and then converting them to the form of Eq. (2), we
will generate them in the desired form.  
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Rotational Terms
The definition of a partial angular velocity [Eq. (5)] can be inverted to express the angular

velocity in terms of the partial angular velocities:

wB = wt
B + ui∑

i=1

ν
 wi

B (30)

where wt
B is an explicit function of time.  In this paper, we restrict the analysis to systems in which

wt
B is zero, such that

wB = ui∑
i=1

ν
 wi

B (31)

(This restriction is removed when nonholonomic systems are considered.13)
Angular acceleration can also be expressed in terms of partial angular velocities:

a B = dwB

dt
 = ∑

r=1

ν
 dur

dt
wr

B + ur
dwr

B

dt
  =  ∑

r=1

ν
 urwr

B + a rem
B (32)

where the angular acceleration remainder, a rem
B , is defined as:

a rem
B  = ui

dwi
B

dt
 ∑
i=1

ν
(33)

Comparing Eqs. (2) and (33), we see that the angular acceleration of B has been broken up into
two parts: one which goes on the left-hand side of the equations (in the mass matrix), and a
remainder which goes on the right-hand side (in the force array).  

For each body in the system, we need to formulate expressions for the angular velocity, wB,
the angular acceleration remainder, aBrem, and the ν partial angular velocities, wBi (i=1, ... ν).  To
start the analysis, the angular velocity and angular acceleration remainder for N are set to zero:

aNrem= wN = 0 (34)

Also, the ν partial angular velocities for N are defined as zero:

wNi = 0     (i = 1, ... ν) (35)

The analysis proceeds such that children bodies are always processed after their parent.  That
is, the analysis proceeds “down” the topology tree.  Table 7 summarizes the relationships used to
develop the necessary expressions, for every other body in the system, based on how it is
classified in rotation (see Table 5).  Note that the formulas in the table must be applied in the order
they appear (from the top row to the bottom).  

The formulas in the table specify when intermediate variables should be introduced (as
indicated with the brackets “«” and “»”), and when vectors should be expressed in a new
coordinate system (via a dot-product with a basis dyadic).

To illustrate the general appearance of the terms in Table 7, Table 8 shows some of expressions
formed for the satellite example.  The many “z” intermediate variables shown are the result of the
“« »” operation.  The “z” terms are not defined in this paper (there are over 300 of them), as the
intent here is just to give an idea of how  expressions are formed for the various terms.   

However, the equations of motion for this system have been published elsewhere.13
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Table 7. Formulas pertaining to rotational velocity and acceleration.
Symbol 0  d .o . f . rotor 1  d .o . f . 3  d .o . f .

wA’ «wA • A» « «wA • A» • B»
AwB ur dBrot  (a) ur dBrot

wB wA «wA’ + AwB» «wA’ + AwB» uo+1 b1 + uo+2 b2

+ uo+3 b3   (b)

AwBi drot
B for i = r

0 for i ≠ r

drot
B for i = r

0 for i ≠ r
wBi wAi «wAi • A» + AwBi ««wAi • A» • B»

+ AwBi

bi-o  i-o=1,2,3
0     otherwise

aBrem aArem «aArem • A
+ wA’ × AwB»

«aArem • B
+ wA’ × AwB»

0

(a) speed ur is the speed corresponding to the joint rotation of B.

(b) index o is an offset to the indices of the three rotational speeds associated with B.

 (Some of the sub-expressions shown in Table 8 have not been replaced with intermediate
variables.  Intermediate variables are not introduced by the computer algebra system unless they
appear at least twice in the equations of motion.  Thus, we know that expressions appearing in
Table 8 did not occur more than once in the final equations, and may not have appeared at all.)

Translational Terms
The approach used to develop an expression for central acceleration is similar to that used for

angular acceleration, and leads to the result:

aB* = dvB*

dt
  = ∑

r=1

ν
 dur

dt
v rB* + ur

dv rB*

dt
  = ∑

r=1

ν
 urv rB* + aremB* (36)

where aremB*  is the central acceleration remainder, defined as

aremB*  = ui
dv i

B*

dt
 ∑
i=1

ν

(37)

As was the case for the rotational analysis, a component in vB* that is an explicit function of
time, v t

B*, is required to be zero within the scope of this paper.  

We again process the topology tree from the top down, such that the parent of each body B is
analyzed before B is processed.  To start, the ν partial angular velocities for N are defined as zero:

v i
N* = 0,      (i = 1, ... ν) (38)

Also, the central acceleration remainder of N is set to the negative acceleration due to gravity:

aremN*  = –g (39)
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Table 8.  Rotational  velocity and acceleration terms  for satellite example.
Property Body B Body C Body D Body E Body F

wA' u6 b3 + u5 b2 +
u4 b1

Z4 c1 + Z6 d3 +
Z7 d2

u6 b3 + u5 b2 +
u4 b1

(u4 C9 + u5 S9)
e1 + Z15 f3 +

Z16 f2
AwB 0 u7 b3 u8 c1 u9 b3 u10 e1

wB u4 b1 + u5 b2 +
u6 b3

u5 b2 + u4 b1 +
Z3 b3

Z6 d3 + Z7 d2 +
Z12 c1

u5 b2 + u4 b1 +
Z13 b3

Z15 f3 + Z16 f2
+ Z21 e1

wA'i 0, 0, 0, b1, b2,
b3, 0, 0, 0, 0

0, 0, 0, (Z8 d3 -
Z9 d2 + C7 c1),
(-Z10 d3 + Z11

d2 + S7 c1), (C8
d3 + S8 d2), (C8
d3 + S8 d2), 0,

0, 0

0, 0, 0, b1, b2,
b3, 0, 0, 0, 0

0, 0, 0, (Z17 f3
-Z18 f2

+ C9 e1), (-Z19
f3 + Z20 f2 + S9
e1), (C10 f3 +
S10 f2), 0, 0,
(C10 f3 + S10

f2), 0
AwBi 0, 0, 0, 0, 0, 0,

0, 0, 0, 0
0, 0, 0, 0, 0, 0,

b3, 0, 0, 0
0, 0, 0, 0, 0, 0,

0, c1, 0, 0
0, 0, 0, 0, 0, 0,

0, 0, b3, 0
0, 0, 0, 0, 0, 0,

0, 0, 0, e1
wBi 0, 0, 0, b1, b2,

b3, 0, 0, 0, 0
0, 0, 0, b1, b2,
b3, b3, 0, 0, 0

0, 0, 0, (Z8 d3 -
Z9 d2 + C7 c1),
(-Z10 d3 + Z11

d2 + S7 c1), (C8
d3 + S8 d2), (C8
d3 + S8 d2), c1,
0, 0, (C8 d3 +

S8 d2), (C8 d3 +
S8 d2), c1, 0, 0

0, 0, 0, b1, b2,
b3, 0, 0, b3, 0

0, 0, 0, (Z17 f3
-Z18 f2 + C9

e1), (-Z19 f3 +
Z20 f2 + S9 e1),
(C10 f3 + S10
f2), 0, 0, (C10
f3 + S10 f2), e1

aBrem 0 -Z47 b2 + Z48
b1

Z51 c1 + Z55 d3
+ Z56 d2

-Z57 b2 + Z58
b1

Z59 e1 + Z61 f3
+ (u10 Z15 -Z60

C10) f2

aABrem 0 u5 u7 b1 -u4 u7
b2

u8 Z6 d2 -u8 Z7
d3

u5 u9 b1 -u4 u9
b2

u10 Z15 f2 -u10
Z16 f3

 (If the system is not contained in a uniform gravitational field, as is the case for the satellite
example, then the vector g  is defined as zero.)  Forces due to gravity are handled this way, rather
than by defining a gravity force for each body, because it is much more efficient.  All acceleration
remainders that are derived using recursive relationships include gravity if it was included in N.
For bodies “down” the tree, the effect of gravity is included without adding any complexity to the
equations.  Thus, when gravity is included, the effect on efficiency is usually that only a few
multiplications are added to the equations of motion, regardless of the number of bodies.

Table 9 lists the formulas used to develop the corresponding terms for each body “down” the
tree.  As was the case for Table 7, the expressions at the bottom of the table refer to expressions
defined at the top.  Table 10 show some of these terms for the satellite example.  (A few of the
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dyadic terms (in the row for R
B
) are lengthy and are not shown in their entirety.  All other terms

are complete.)

Table 9. Formulas pertaining to translational velocity and acceleration.
Symbol nonrecursive recursive
rA*B0

« rA0BJ + qi+o∑
i=1

Ntd
B

 dti
B »

wB’ «wB • B» «wB • B»
v i

A*B* dtj
B     for i = o+j, j=1, ...Ntd

B

  « wi
A • A » × rA*B0

 + « wi
B • B » × rB0B*

     otherwise

Ni
B B Ni

A if v i
A*B* = 0

B otherwise
v i

B*
bi-o

0

i is translational
 d.o.f. of B
otherwise

« v i
A* + v i

A*B*  • B »

R
B « a rem

B  • B  × B 

+ wB' ×  wB' ×  B  »

« a rem
B  • B  × B 

+ wB' ×  wB' ×  B  »
aremB*

«wB' × « v i
B*∑

i=1

ν
»  – g • B» « aremA*  + R

A
 • rA*B0 + R

B
 • rB0B* 

+ 2∑
i=1

Ntd
B

 uo+j  « wA• A » ×  dtj
B  • B »

Note:  If B is “fixed” (see Table 3), substitute B0 for B*.  If A is fixed,  substitute A0 for A*.

Two expressions in the Table 9 deserve discussion.  For each body, a set of “native bodies”
for the partial velocities is defined, whose elements are designated NBi, where i=1, ... ν.  Each of
these identifies the body that is furthest “up” the tree in which the partial velocity is algebraically
equal to the corresponding partial velocity of B.  For example, in Table 10, ND1, ND2, and ND3
are set to B, indicating that the first three partial velocities of D are algebraically equal to the
corresponding partial velocities in B.  On the other hand, the partial velocities for indices 4 through
8 are native to D.  The significance of this information will be shown later.

Another expression that deserves comment is R
B
, called an acceleration rotational dyadic.  It

accounts for the acceleration of a point due to angular rotation and angular acceleration of the body
in which the point is fixed.  The vector contribution to the translational acceleration of a point is
obtained by “projecting” a position vector against this dyadic.  It is used with the position vector
going from the mass center of a parent body to the origin of the body of interest (rA*B0), and also
with the position vector going from the origin to the mass center of the same body (rB0B*).  As can
be seen in the table, this dyadic can involve complex expressions.  Computational savings are
obtained by introducing intermediate variables for the scalars appearing in this dyadic.  
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Table 10.  Translational  velocity and acceleration terms  for satellite example.
Property Body B Body C Body D Body E Body F

rA*B0 P1 b3 -(L1 b3 -L3 c2) -(L7 b2 -P1 b3) 0

vB*i b1, b2, b3, 0, 0,
0, 0, 0, 0, 0

(C7 c1 -S7 c2),
(C7 c2 + S7 c1),
b3, -(Z22 c1 +
Z23 c2), (-Z22

c2 + Z23 c1), 0,
0, 0, 0, 0

(Z8 d3 -Z9 d2 +
C7 c1), (-Z10 d3
+ Z11 d2 + S7

c1), (C8 d3 + S8
d2), (-Z25 d3 +
Z27 d2 + Z29
c1), -(Z30 d3 -
Z31 d2 + Z32
c1), -Z33 c1, -

Z33 c1, (L6 d2 -
L5 d3), 0, 0

(C9 e1 -S9 e2),
(C9 e2 + S9 e1),

b3, -(L7 b3 +
Z34 e1 + Z35

e2), (-Z34 e2 +
Z35 e1), (-Z36
e2 + L7 C9 e1),

0, 0, 0, 0

(Z17 f3 -Z18 f2
+ C9 e1), (-Z19
f3 + Z20 f2 + S9
e1), (C10 f3 +

S10 f2), -(Z37 f2
+ Z38 f3 -Z39
e1), -(Z40 f3 +
Z41 f2 + Z42

e1), (Z43 f3 -Z44
f2 + Z46 e1), 0,
0, Z45 e1, -L8 f3

NBi B, B, B, B, B,
B, B, B, B, B

B, B, B, C, C,
B, B, B, B, B

B, B, B, D, D,
D, D, D, B, B

B, B, B, E, E,
E, B, B, B, B

B, B, B, F, F,
F, B, B, F, F

aB*rem Z65 b1 + Z66 b2
+ Z67 b3

-(Z74 c2 -(Z73
C7 + Z71 S7) c1
+ -(Z67 -Z75)

b3)

Z81 d3 + Z82 d2
+ Z83 c1

(Z84 C9 + Z85
S9) e1 + Z86 e2

-Z87 b3

Z90 f2 -Z91 f3 +
Z92 e1

RB u6 u4 [(b3 b1) +
(b1 b3)] + u4 u5
[(b1 b2) + (b2
b1)] + Z62 [(b3
b2) + (b2 b3)] -
(Z63 + u62) (b2
b2) -(Z63 + Z64)
(b3 b3) -(u62 +
Z64) (b1 b1)

-(-(-Z49 + Z50 +
Z68) (c2 b3) -Z4
Z5 (c1 c2) -Z4

Z5 (c2 c1) -(Z49
-Z50 + Z68) (b3

c2) + (Z69 +
Z52) (b3 b3) +

.. .

(Z7 Z12 -Z55)
(c1 d2) + (Z6
Z12 + Z56) (c1
d3) + (Z55 + Z7
Z12) (d2 c1) + -
(Z56 -Z6 Z12)

(d3 c1) + -(Z51 -
Z76) (d2 d3) +

.. .

-(Z132 (e1 e1) +
Z132 (e2 e2) -
Z13 (u5 C9 -u4
S9) (e2 b3) -Z13
(u4 C9 + u5 S9)
(e1 b3) + (u5 C9

-u4 S9)2 (e1 e1)
+ ...

-(Z61 -Z88) (e1
f2) + ((u10 Z15 -
Z60 C10) + Z15
Z21) (e1 f3) +

(Z61 + Z88) (f2
e1) + -((u10 Z15
-Z60 C10) -Z15
Z21) (f3 e1) +

.. .

The Dynamical Equations
Once the terms in Tables 7 and 9 are obtained for all bodies, it is straightforward to finish the

analysis to obtain the dynamical equations.  By substituting Eqs. (32) and (36) into Eq. (12) and
comparing with Eq. (2), the coefficient in the mass matrix for a particular row i and column j is
obtained:

Mij  =∑
B

NB

 wj
B • I

B*
 • wi

B + v j
B* • v i

B*mB' (40)

where the symbol mB' is defined according to whether B is “fixed” or not:

mB' = 
0 B is “fixed”

mBc (Eq. 15) otherwise (41)
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Subtracting Eq. (40) from Eq. (12) yields the coefficient for element i in the force array
(corresponding to row i in the mass matrix):

fi = 

 Tt
B∑

t=1

NB,T

 – a rem
B  • I

B*
 – wB × I

B*
 • wB   • wi

B

+ Ff
B ∑

f=1

NB,F

  – aremB*  mB'   • v i
B*

∑
B

NB

(42)

To obtain efficient equations without extensive symbolic manipulation, it is recommended that
intermediate variables be introduced as follows.  For the mass-matrix coefficient, two cases exist.
The first applies when either native the body Ni

B or Nj
B is set to  B.  In such a case, the following

formulation is suggested:

Mij  =∑
B

NB

 wj
B • « I

B*
 • wi

B » + v j
B* • « v i

B*mB' »      Ni
B=B or Nj

B=B (43)

Otherwise, the recommended formulation is

Mij  =∑
B

NB

 wj
B • « I

B*
 • wi

B » + « v j
B* • v i

B* »mB'      Ni
B≠B and Nj

B≠B (44)

In the case of Eq. (44), the caret symbol “^” appears over the partial velocities, indicating that
they are taken from the body in which they were introduced, rather than from B.  The difference is
that the partial velocities for B are in the basis of B, as needed for the recursive relations of Table
9.  To see the significance of this information, compare the first partial velocity for bodies all five
bodies of the example, in Table 10.  All five sets are expressed differently in the table, yet all are
algebraically equivalent, being simply b1, b2, and b3.  That is,

vB*1 • vB*2 = vC*1 • vC*2 = vD*1 • vD*2 = vE*1 • vE*2 = vF*1 • vF*2 = 0 (45)

Eq. (45) is true numerically for any valid set of generalized coordinates and speeds.  It is also true
symbolically for the expressions listed in the table for bodies B, C, and E.  However, for bodies D
and F, the necessary symbolic cancellations will not occur because intermediate “z” variables have
been substituted for the complicated trigonometric expressions.

The formulation for the force array is as follows:

fi = 

« Tt
B∑

t=1

NB,T

 » • wi
B –  « a rem

B  • I
B*

 + wB × I
B*

 • wB  » • wi
B 

+ « Ff
B ∑

f=1

NB,F

 » • v i
B*  – aremB*  • « v i

B* mB' »

∑
B

all bodies

(46)

Note that the partial velocity dotted with the applied forces is expressed in its original basis (as
indicated with the caret), which is either B or a body up the tree from B.

The set of dynamical equations presented as Eq. (2) can be uncoupled symbolically using LU
decomposition.  By introducing intermediate variables, the solution can be guaranteed to involve
no more computation than a numerical solution.  However, if there is any sparsity in the mass
matrix, the symbolic solution is more efficient than the numerical one.  The locations of the zeros
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in the mass matrix are shown below (1) when the equations are ordered by index (1, 2, ... 10),
and (2) with the equations ordered to move the zeros to the upper-left corner of the matrix.  (The
permutation is done to avoid “matrix fill” when the matrix is decomposed.)

M = 

 •  0  0  •  •  •  •  •  •  • 
 0  •  0  •  •  •  •  •  •  • 
 0  0  •  •  •  •  0  •  0  • 
 •  •  •  •  •  •  •  •  •  • 
 •  •  •  •  •  •  •  •  •  • 
 •  •  •  •  •  •  •  •  •  • 
 •  •  0  •  •  •  •  •  0 0 
 •  •  •  •  •  •  •  •  0  0 
 •  •  0  •  •  •  0  0  •  0 
 •  •  •  •  •  •  0  0  0  • 

 → 

 •  0  0  •  0  0  •  •  •  • 
 0  •  0  0  •  •  0  •  •  • 
 0  0  •  0  •  •  •  •  •  • 
 •  0  0  •  •  •  0  •  •  • 
 0  •  •  •  •  0  •  •  •  • 
 0  •  •  •  0  •  •  •  •  • 
 •  0  •  0  •  •  •  •  •  • 
 •  •  •  •  •  •  •  •  •  • 
 •  •  •  •  •  •  •  •  •  • 
 •  •  •  •  •  •  •  •  •  • (47)

Discussion
The formalism presented above was developed with two objectives in mind: (1) to support the

development of software that automates the formulation and programming of the complete
equations of motion for multibody systems, and (2) to obtain highly efficient computer code for
solving those equations.  The second objective requires that symbolic computation be used, to take
advantage of special geometric simplifications that are unique to a particular system.  (For example,
all of the rotation axes in the spacecraft are orthogonal.)  While it is true that symbolic multibody
programs have been developed earlier and are in use, they deal mainly with inertial forces and
torques.  None can automatically incorporate active forces and moments into the equations: it is up
to the analyst to provide these terms independently.  For many everyday dynamical systems, such
as ground vehicles, the terms due to active forces and moments are much more complicated than
the inertial terms.  The basis-free vector representation used in the formalism presented here
permits any imaginable force or moment to be included correctly and automatically by software
based on the formalism.

The three parts of the analysis (system description, kinematics, and dynamics) are independent
of each other.  Thus, it is possible to extend or refine analysis capabilities in one area of the
analysis without reworking the others.  For example, the possible modeling simplifications made
when bodies are added are unrelated to the method used to obtain kinematical and dynamical
equations.  Similarly, the kinematics analysis method is valid regardless of how the dynamical
equations are formed.  Although this paper is limited in scope to holonomic tree-topology systems,
the basic formalism has been extended to deal with nonholonomic systems by changing only the
dynamics part of the analysis.13  A further extension, to include closed kinematical loops, was also
made and required only a change to the kinematical part of the analysis.13  (These extensions will
be detailed in a future paper.)  The methods described in this paper have been programmed in Lisp,
and are part of a software package called AUTOSIM, developed at The University of Michigan to
automatically generate simulation codes for multibody systems.  The inputs provided by a
dynamicist to describe the spacecraft example in AUTOSIM are listed in the companion paper.12

Many of the details of the formalism are “rules of thumb” that would be performed by an
experienced dynamicist deriving equations by hand.  By paying attention to many minor details,
including forced coordinate transformations and the introduction of intermediate variables, highly
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efficient computational code is obtained. As a point of reference, Table 11 summarizes the
efficiency of the code obtained by AUTOSIM and compares it with results from another symbolic
multibody program, SD/FAST.9  

Table 11.  Computational efficiency of spacecraft code.
Source adds and subtracts multiplies, divides, and

function calls
SD/FAST Users Manual 709 1094
AUTOSIM, using full, nonlinear
formulation

628 791

AUTOSIM, using small variables
for 8 d.o.f.

442 514

When forming equations with pencil and paper, dynamicists like to throw out terms that are
known to be numerically negligible.  Also, truncated Taylor expansions are substituted for
trigonometric functions of angles that are known to be small.  (That is, sin x ≈ x; cos x ≈ 1.)  For
example, if the satellite model is intended to apply for situations in which its attitude deviates only
slightly from the nominal orientation, the three rotations of the body (q4, q5, and q6) can be
modelled as “small.”  Also, the two rotations of the flexible boom (q9 and q10) are always “small.”
Table 11 shows the effect of these assumptions on the operation counts.  The alternate formulation
is made by applying the same analysis method, but letting the computer algebra system simplify
expressions involving small quantities.  For an example slew maneuver, identical numerical results
were obtained with the two formulations.12

The formalism from this paper includes many options that are intended to simplify equations of
motion.  The significance of these options depends greatly on the topology of the multibody
system being considered.  For example, in a robot system in which all bodies are connected by
hinges, there are no simplifications to be made by the use of “native” partial velocities.  However,
when applied to vehicle systems, the attention to “native” bodies can yield significant
simplifications.  On the other hand, the highly recursive relationships and the rotation dyadic in
Tables 7 and 9 yield compact robot equations that are efficient compared to other formulations, but
offer little improvement for vehicle models.  

Conclusions
A multibody formalism has been presented that includes the sort of judgements a human

analyst makes in formulating equations of motion for a tree-topology multibody system.  To use
the formalism, a dynamicist describes the multibody system in geometric terms, using vectors to
specify allowable motions of each body relative to another body in the system.  Forces and torques
acting on each body are specified as vectors, to permit the inclusion of any conceivable force- or
torque-producing behavior.  From the description of the multibody system, the formalism has rules
to determine how generalized coordinates and speeds are defined.  (The speeds are not necessarily
the derivatives of the coordinates.)  The formalism includes a number of features that distinguish it
from previously reported work: (1) it does not keep track of coordinate systems that were used to
define vectors, (2) when appropriate, it forces vectors of an unknown nature into predetermined
vector-bases by dotting them with dyadics, (3) it specifies when “intermediate variables” are to be
introduced to improve computational efficiency, (4) it defines speeds using both recursive and
nonrecursive definitions, depending on topology, (5) it includes a method for deriving kinematical
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equations when the speeds are not the derivatives of the generalized coordinates, (6) it uses the
parallel axis theorem to lump inertial properties of bodies together when possible, (7) it uses a
method derived from Kane’s work to develop the dynamical equations, modified to take full
advantage of recursion through the use of a rotation dyadic, and (8) it symbolically uncouples the
implicit equations to exploit sparsity in the mass matrix.  There are significant benefits deriving
from these features.  The formalism permits the dynamicist a great deal of flexibility in describing a
model, and at the same time, the “input” description to the formalism is very simple.  Yet, the
computer codes generated are highly efficient.  Another benefit, reported elsewhere, is that the
relative independence of the analysis stages allow easy extension to multibody systems that have
nonholonomic constraints and/or closed kinematical loops.  
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